Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why?

نویسندگان

  • Marina E. Wolf
  • Kuei Y. Tseng
چکیده

In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs) in two brain regions that are critical for motivation and reward-the ventral tegmental area (VTA) and the nucleus accumbens (NAc). This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs). This plasticity is rapid in onset (hours), GluA2-dependent, and can be observed with a single cocaine injection. Whereas it is short-lived after experimenter-administered cocaine, it persists for months after cocaine self-administration. In addition to strengthening synapses and altering Ca(2+) signaling, CP-AMPAR insertion alters subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased DA cell activity that occurs during early withdrawal from cocaine exposure. Metabotropic glutamate receptor 1 (mGluR1) exerts a negative influence on CP-AMPAR accumulation in the VTA. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs) of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as treatments for cocaine addiction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using metabotropic glutamate receptors to modulate cocaine's synaptic and behavioral effects: mGluR1 finds a niche.

Group I metabotropic glutamate receptors (mGluR) are important modulators of excitatory synaptic transmission and therefore potential targets for drug development. In several brain regions (ventral tegmental area (VTA), cerebellum, and amygdala), stimulation of mGluR1 selectively inhibits synaptic transmission mediated by calcium-permeable AMPA receptors (CP-AMPARs) and thus produces synaptic d...

متن کامل

Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats.

The initiation of the psychostimulant sensitization process depends on the mesolimbic system, which projects from the ventral tegmental area (VTA) to the nucleus accumbens. Although such initiation is primarily dependent on glutamatergic activity in VTA neurons, the exact role VTA excitatory synapses play in this process is poorly understood. Here, we examine the effects of repeated in vivo inj...

متن کامل

Prolonged withdrawal from repeated noncontingent cocaine exposure increases NMDA receptor expression and ERK activity in the nucleus accumbens.

Cocaine-induced changes in glutamatergic synaptic transmission in the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play a key role in cocaine behavioral effects. Activation of ionotropic glutamate receptor NMDA receptor (NMDAR) in the VTA is critical for the development of cocaine psychomotor sensitization. However, the role of NMDAR in the NAc, a brain area critical for the exp...

متن کامل

Withdrawal from Cocaine Self-Administration Alters NMDA Receptor-Mediated Ca2+ Entry in Nucleus Accumbens Dendritic Spines

We previously showed that the time-dependent intensification ("incubation") of cue-induced cocaine seeking after withdrawal from extended-access cocaine self-administration is accompanied by accumulation of Ca(2+)-permeable AMPA receptors (CP-AMPARs) in the rat nucleus accumbens (NAc). These results suggest an enduring change in Ca(2+) signaling in NAc dendritic spines. The purpose of the prese...

متن کامل

Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine.

Repeated noncontingent cocaine injections, which lead to behavioral sensitization, increase AMPA receptor (AMPAR) transmission in the rodent nucleus accumbens (NAc) in a withdrawal-dependent manner. On withdrawal days (WD) 10-21, this is attributable to upregulation of GluA1A2-containing AMPARs. However, synaptic incorporation of GluA2-lacking/Ca(2+)-permeable AMPARs (CP-AMPARs) was observed af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012